3.728 \(\int \frac{(1+x)^{3/2}}{\sqrt{1-x} x} \, dx\)

Optimal. Leaf size=43 \[ -\sqrt{1-x} \sqrt{x+1}+2 \sin ^{-1}(x)-\tanh ^{-1}\left (\sqrt{1-x} \sqrt{x+1}\right ) \]

[Out]

-(Sqrt[1 - x]*Sqrt[1 + x]) + 2*ArcSin[x] - ArcTanh[Sqrt[1 - x]*Sqrt[1 + x]]

________________________________________________________________________________________

Rubi [A]  time = 0.0113992, antiderivative size = 43, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {102, 157, 41, 216, 92, 206} \[ -\sqrt{1-x} \sqrt{x+1}+2 \sin ^{-1}(x)-\tanh ^{-1}\left (\sqrt{1-x} \sqrt{x+1}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(1 + x)^(3/2)/(Sqrt[1 - x]*x),x]

[Out]

-(Sqrt[1 - x]*Sqrt[1 + x]) + 2*ArcSin[x] - ArcTanh[Sqrt[1 - x]*Sqrt[1 + x]]

Rule 102

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m - 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 1)), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1+x)^{3/2}}{\sqrt{1-x} x} \, dx &=-\sqrt{1-x} \sqrt{1+x}-\int \frac{-1-2 x}{\sqrt{1-x} x \sqrt{1+x}} \, dx\\ &=-\sqrt{1-x} \sqrt{1+x}+2 \int \frac{1}{\sqrt{1-x} \sqrt{1+x}} \, dx+\int \frac{1}{\sqrt{1-x} x \sqrt{1+x}} \, dx\\ &=-\sqrt{1-x} \sqrt{1+x}+2 \int \frac{1}{\sqrt{1-x^2}} \, dx-\operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\sqrt{1-x} \sqrt{1+x}\right )\\ &=-\sqrt{1-x} \sqrt{1+x}+2 \sin ^{-1}(x)-\tanh ^{-1}\left (\sqrt{1-x} \sqrt{1+x}\right )\\ \end{align*}

Mathematica [A]  time = 0.041401, size = 64, normalized size = 1.49 \[ \frac{x^2+\sqrt{1-x^2} \sin ^{-1}(x)-1}{\sqrt{1-x^2}}-\tanh ^{-1}\left (\sqrt{1-x^2}\right )-2 \sin ^{-1}\left (\frac{\sqrt{1-x}}{\sqrt{2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + x)^(3/2)/(Sqrt[1 - x]*x),x]

[Out]

-2*ArcSin[Sqrt[1 - x]/Sqrt[2]] + (-1 + x^2 + Sqrt[1 - x^2]*ArcSin[x])/Sqrt[1 - x^2] - ArcTanh[Sqrt[1 - x^2]]

________________________________________________________________________________________

Maple [A]  time = 0.011, size = 51, normalized size = 1.2 \begin{align*}{\sqrt{1-x}\sqrt{1+x} \left ( -\sqrt{-{x}^{2}+1}-{\it Artanh} \left ({\frac{1}{\sqrt{-{x}^{2}+1}}} \right ) +2\,\arcsin \left ( x \right ) \right ){\frac{1}{\sqrt{-{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(3/2)/x/(1-x)^(1/2),x)

[Out]

(1+x)^(1/2)*(1-x)^(1/2)/(-x^2+1)^(1/2)*(-(-x^2+1)^(1/2)-arctanh(1/(-x^2+1)^(1/2))+2*arcsin(x))

________________________________________________________________________________________

Maxima [A]  time = 1.74653, size = 55, normalized size = 1.28 \begin{align*} -\sqrt{-x^{2} + 1} + 2 \, \arcsin \left (x\right ) - \log \left (\frac{2 \, \sqrt{-x^{2} + 1}}{{\left | x \right |}} + \frac{2}{{\left | x \right |}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/x/(1-x)^(1/2),x, algorithm="maxima")

[Out]

-sqrt(-x^2 + 1) + 2*arcsin(x) - log(2*sqrt(-x^2 + 1)/abs(x) + 2/abs(x))

________________________________________________________________________________________

Fricas [A]  time = 2.02555, size = 151, normalized size = 3.51 \begin{align*} -\sqrt{x + 1} \sqrt{-x + 1} - 4 \, \arctan \left (\frac{\sqrt{x + 1} \sqrt{-x + 1} - 1}{x}\right ) + \log \left (\frac{\sqrt{x + 1} \sqrt{-x + 1} - 1}{x}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/x/(1-x)^(1/2),x, algorithm="fricas")

[Out]

-sqrt(x + 1)*sqrt(-x + 1) - 4*arctan((sqrt(x + 1)*sqrt(-x + 1) - 1)/x) + log((sqrt(x + 1)*sqrt(-x + 1) - 1)/x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (x + 1\right )^{\frac{3}{2}}}{x \sqrt{1 - x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(3/2)/x/(1-x)**(1/2),x)

[Out]

Integral((x + 1)**(3/2)/(x*sqrt(1 - x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/x/(1-x)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError